Signal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).

author

  • J. H. Lu Electerical Engineering, Southern Methodist University
Abstract:

In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation involving past history of the considered signal. Training is performed using the back-propagation algorithm. The trained net is then used to do the forecast. Training is continued during operation to improve performance. The net performance is tested on signals generated by autoregressive (AR) and autoregressive moving average (ARMA) models of different orders and results are compared to optimal forecasts.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network

The optimum design of solar energy systems strongly depends on the accuracy of  solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322  N lo...

full text

Feed-Forward and Recurrent Neural Networks in Signal Prediction

The paper is devoted to time series prediction using linear, perceptron and Elman neural networks of the proposed pattern structure. Signal wavelet de-noising in the initial stage is discussed as well. The main part of the paper is devoted to the comparison of different models of time series prediction. The proposed algorithm is applied to the real signal representing gas consumption.

full text

Analog Multiplier for Feed Forward Neural Network Signal Processing

In this paper, a new implementation of Four-Quadrant CMOS Analog Multiplier Circuit for feed forward neural networks multi layer perceptron operation will be proposed. The proposed multiplier will be divided into two or three parts, which will be inside the input, the synapse and the neuron. The main characteristics of the proposed circuit are the small silicon area and the low power consumptio...

full text

Stock Market Prediction using Feed-forward Artificial Neural Network

This paper presents computational approach for stock market prediction. Artificial Neural Network (ANN) forms a useful tool in predicting price movement of a particular stock. In the short term, the pricing relationship between the elements of a sector holds firmly. An ANN can learn this pricing relationship to high degree of accuracy and be deployed to generate profits with sufficiently large ...

full text

Feed forward neural network entities

Feed Forward Neural Networks (FFNNs) are computational techniques inspired by the physiology of the brain and used in the approximation of general mappings from one nite dimensional space to another. They present a practical application of the theoretical resolution of Hilbert's 13 th problem by Kolmogorov and Lorenz, and have been used with success in a variety of applications. However, as the...

full text

Max-Entropy Feed-Forward Clustering Neural Network

The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  69- 74

publication date 1992-05-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023